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Received 20 May 1980 

Abstract. A group structure hidden behind the usual manipulations involving cluster 
expansions, is brought to light through the recognition of the fundamental role played by 
Bell polynomials. The inversion problems are thereby reduced to matrix calculus. Simple 
derivations are given of the relations between cluster integrals and the virial coefficients. 

1. Introduction 

‘If you want to find more, dig at the same place.’ Seferis. 

Since its inauguration more than fifty years ago, the subject of cluster expansions has 
been the cause of much work and ingenuity. Despite the fact that the fundamental 
re’lations have been found at the very beginning of its building, a continual effort has 
been made to clarify their meaning and simplify the calculations. Let us here only recall 
the insight given by graph theory (Uhlenbeck and Ford 1962) and by combinatorial and 
analytical methods (Widom 1954, Kilpatrick and Ford 1969, Stell 1965). Much 
consideration has been devoted to some particular cases such as the quantum gases, 
relativistic (Nieto 1970) or non-relativistic (Leonard 1968). 

Our objective in this paper is to examine cluster expansions and the virial equation 
of state within a formalism which emphasises the purely combinatorial aspects of the 
question. It is subjacent to all the previous treatments involving counting problems in 
statistical mechanics, although, to our knowledge, it has never been presented as that. 
Of course, everybody knows the canonical partition functions for a gas to be poly- 
nomials in the cluster integrals, for which the grand canonical partition function is a 
generating function. We shall here precisely identify these polynomials as those 
introduced in the thirties by Bell when assessing some combinatorial problems (Rior- 
dan 1958, Comtet 1974). Besides reducing many involved manipulations to matrix 
calculus, the formalism of Bell polynomials has a great unifying appeal, as it embodies 
all the usual methods in a very simple language, being in some aspects a practical 
shorthand for complex variable methods. Under the guise of cycle indicators of the 
symmetric group, these polynomials have already been used (Aldrovandi and Teixeira 
Filho, 1976a, b) in order to obtain recursion relations for relativistic quantum ideal 
gases in the microcanonical ensemble. 
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A r&sum& on the Bell polynomials is given in D 2. Although we have chosen 
specifically the topics of interest to our subject, we think they are worth exposing in 
detail, with some preliminary examples of their use in statistical mechanics. Section 3 is 
devoted to the inversion problems, tackled through the group structure which emerges 
from the formalism. Cluster expansions and the equation of state are then examined in 
§ 4.  

2. Bell polynomials 

As we shall not be concerned with convergence problems, only formal series will be 
really considered here, despite our frequent use of the word ‘function’. The simplest 
way to introduce Bell polynomials (Riordan 1958)  is recalling the Fah di Bruno formula 
for the higher-order derivatives of a composite function. Let us take F ( t )  = f [ g ( t ) ]  and 
calculate its nth order derivative Fn(0). In order to simplify matters we shall suppose 
f ( u )  and g ( t )  to satisfy f ( 0 )  = 0, g(0)  = 0 and to be given by the formal series 

gl I g ( t ) =  - t .  
1=1 I !  

The variables u and t will be used as dummy variables throughout this paper. The 
coefficients f l  and gl are of course the derivatives at the respective origins. For the first 
few orders, we obtain: 

, . . etc. In general, we obtain: 

The numbers Bnl are polynomials in the gi%, quite independent of f ( t )  and its 
derivatives. We shall call them Bell polynomials. The F,, are sometimes called 
complete Bell polynomials and will be denoted by F,,(f; g ) .  They are clearly the 
coefficients of the formal Taylor series for F ( t ) ,  

It will be frequently convenient to use the notation B,l[g( t )]  = B,I(gi, g2, . . .) = 
B,r[gl, gz, . . . , g,,-L+l]. As the B,r are independent of f ( u ) ,  they can be computed by 
choosing any function, for instance f ( u )  = expau - 1. In this case, 
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Comparison with (2.2) will then beget the multinomial theorem 

(2.3) 

This is the most useful expression involving Bell polynomials: from it, all their 
properties can be obtained. To begin with, it elucidates their meaning, 

which can of course be read also directly from (2.1). 
Their exact expression (Abramowitz and Stegun 1965) is 

(2.4) 

(2.5) 

where the double prime recalls that the summation is to be done over all the sets {ui} on 
non-negative integers vi satisfying simultaneously the two conditions 

f q = l ;  f jui =n. (2.6) 
j = 1  j = 1  

From equation (2.3) it is easily seen that 

g" = B"l[g(t) l  (2.7) 

and 

g:  = B,,[g(t)l. (2.8) 
Two other properties can immediately be obtained from equations (2.5) and (2.6): 

(2.9) 
(2.10) 

As an example: the expression for the canonical partition function for a simple 
non-relativistic classical gas of n particles in terms of the cluster integrals bl (Pathria 
1972) is, when translated into the language of Bell polynomials, given by 

Q,(T, V ) = L  f (<)kni(l!bl ,  2!b2,3!b3,. . .) 
n! l=1 A 

1 "  V V 
(2.11) 

with A the mean thermal wavelength. From (2.1), Q,(T, V )  =F,(f; g ) / n ! ,  with 
fi = ( VK3)'  so that f ( u )  = exp( VA-3u)  - 1 and g( t )  = CZl brt'. If t is the fugacity, then 
p ( t ) = k 7 X 3 g ( t )  is the piessure, and equation (2.2) will give the grand canonical 
partition function F(T, V, t )  = 1 t"Q, = exp( V p ( t ) / k T ) .  The numbers 
vl, v 2 , .  . . , vi in (2.5) and (2.6) are here the numbers of 1-clusters, 2-clusters, . . . 
j-clusters in the system of m particles. In particular, the only solution of equations (2.6) 
for 1 = 1 is U, = 1, all remaining ui = 0. From the point of view of cluster diagrams, this 
corresponds to the case of a completely connected graph of n-particles. It contributes 
to a,( T, V )  a term VA-3b,, as can be seen using (2.7). The total contribution of these 
connected terms to the grand canonical partition function is then F"' = V p ( t ) / k T .  In 
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this way one gets, in a very simple way, the old result F = exp(F"') (Bloch and de 
Dominicis 1958). 

The clumsiness of expression (2.5) is at first sight discouraging, the real trouble being 
the search for all the solutions of conditions (2.6) in each case. The point is, however, 
that these equations are really dispensable except eventually for numerical compu- 
tations: all the general properties of those polynomials can be obtained from the 
multinomial theorem. We shall work out a few examples whose usefulness will become 
apparent later on, computing the polynomials Bfl1 for some functions. We shall suppose 
all the first coefficients to be unitary, f l  = gl = 1 as this will be the case with all the series 
we shall meet. 

As a first case, let us take in (2.2) the function f(u) = (1 +U)' - 1. The coefficients f i  
will be: 

if r is a non-negative integer, r 5 12 0 ;  
( r  - I)! 

f; = (2.12) 

So, for instance, 

which allows the computation of reciprocal series of the type 

[ f ( t ) ] - "  = t-" 1 + 1 [ 1=1 - 1+1 I !  "I -" 

(2.14) 

This is not a formal series of the type we have proposed to restrict ourselves to at the 
beginning, as of course f-"(O) ic 0. In order to recover one of that kind, it is enough to 
consider instead 

From equation (2 .7 )  we then recognise that 

(2.15) 

an expression which will be of use in the inversion problem. 
Another case of interest is the formulation of Leibnitz rule for the derivative of the 

product of two functions in terms of Bell polynomials. Simply by substituting g(t) = 
F(t)G(t) in (2.3) and comparing with the multinomial expansions for F ( t )  and G(t) ,  one 
finds that 

(2.16) 
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This in particular says that 

(2.17) 

Finally, let us consider a particular case of two functions f ( u )  and g ( t )  which are 

fCs( t ) l= t. (2.18) 

inverse to each other in the sense that 

First, let g ( t )  = exp(t)- 1. The multinomial theorem then gives 

1 t“ 
--[exp(t)-l]’= 
l !  ,,=in! 

--Bnl(l, I ,  I , .  . .). ( 2 . 1 9 ~ )  

This is precisely one of the generating functions of the Stirling numbers Slf’ of the 
second kind (Abramowitz and Stegun, 1965), usually defined by 

x n =  &+ Sjf’X(X-1) . . . (  x-1+1) .  (2.196) 
1-0 

So, one gets 

&(l ,  1, 1 , .  * . ) = S f ’ .  (2.20) 

The function inverse to the one above is f ( u )  = ln(1-k U). The multinomial theorem now 
reads 

This time we have one of the generating functions for the (signless) Stirling numbers 
slf) of the first kind, usually introduced through 

1 

x ( x - 1 )  . . . (  x - - I + l ) =  si”x’. 
j = O  

Consequently, 
( 1 )  B,/(O!, -1 !, 2 ! ,  -3!, . . .) = s n  . 

(2.21) 

(2.22) 

Substituting (2.21) into (2.19b), or vice versa, one gets the well known fact that the 
matrices formed by these numbers are inverse to each other. We shall see in the next 
paragraph that this is not an isolated case. 

3. Matrix calculus and the inversion problem 

From the very expression (2.3), n 2 1 in Bni. The Bell polynomials B,l[g(t)] can be 
considered as elements of a left-triangular infinite matrix B[g].  Although infinite, these 
matrices are most useful, as only their sections n x n are relevant to any consideration 
up to order n. In this case, their determinant is simply the product of the diagonal terms: 
from (2.8), it is g;(”+’)’* = 1 in our case. As can be seen from equation (2.7), the first 
column of B[g]  is constituted precisely by the coefficients gl. The other elements are 
fixed polynomials in these coefficients. These matrices are so in a one-to-one relation to 
the formal series. 
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It is a well known fact that non-singular left-triangular matrices form a group under 
matrix multiplication. Attention is not so frequently drawn to the fact that formal series 
of the type we are considering ( f ( t ) = X ; " = ,  ( f l / l ! ) t l ,  with f l # O )  also form a group 
(Henrici 1974) under the operation of composition. We are now going to see that the 
latter group can be represented in the former. 

Let us take the function f [ g ( t ) ]  in the left-hand side of equation (2.3): 

Hence, 

The matrix corresponding to the composition f o  g is the product of the matrices 
corresponding to each function, in the inverse order. So the composition operation 
between formal series corresponds to the right product of their respective matrices. A 
somewhat lengthier computation shows that associativity is preserved in the represen- 
tation and a trivial check ensures that the identity function g(t) = t is represented by the 
identity matrix. 

These group properties allow many a manipulation involving series to be reduced to 
matrix calculus. We shall be particularly interested in the problem of series inversion in 
the sense of equation (2.18). This should not be mistaken for the search of the 
reciprocal series which, as can be seen from (2.14), does not in general belong to the 
group. Equations (2.18) and (3.1) tell us that iff and g are inverse to each other, also 
g [ f ( t ) ]  = t and B [ f ] B [ g ]  =I, B [ g ] B [ f ]  = I. So, the matrix of the inverse is the inverse 
matrix. The example involving Stirling numbers, in the previous paragraph is a 
particular case of this general result. Let us apply it to get the inversion of equation 
(2.11). There, we had 

B[F( t ) l= B [ f ( g ( t ) ) l =  B[g( t ) lB[ f (u) l .  

It's simpler to consider the second line of the equation, wherefl = 1, so thatf(u) = eu  - 1 
and g(t)  = (V/h3)Cz1 blt'. Then, 
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because 

As here g, = n !6,VK3, 

a well known result. 

case reads simply 
The general inversion problem can be handled from equation (2.1), which in this 

For n = 1,  this gives 

f 1 =  l / g ,  = 1. (3.4) 

For n 3 2, one can use (2.8) to write 

which is a recursion formula. Given the gi's, all the coefficients f n  can be successively 
obtained in this way. This is really the usual way of inverting step-by-step a triangular 
matrix in numerical computations. This equation can be put into a determinantal form 
by applying Crammer's theorem to (3.3). The result, 

would allow us to make contact with determinantal approaches such as Widom's 
(Widom 1954). It can be easily verified that (3.5) comes from the expansion of the 
determinant along the last row. We shall, however, find the solution of the recursion 
relation in a form which will prove itself very convenient for the manipulations on 
cluster expansions. 

Our procedure will be rather devious, but it will have the advantage of being 
constructive and elementary. Mathematicians usually state the result and verify it 
afterwards, using much more than the above formalism (Henrici 1974, Riordan 1958, 
1968, Comtet 1974). All calculations being highly elementary, we shall simply list the 
steps and results. 

(i) Using (2.14) we calculate, for n L 2, f-"f' = (1/1- n)(d/dt)f'-" ; and multiplying 
by t " + l ,  we obtain 

(ii) From this equation we can observe that the nth coefficient is zero, 
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(iii) This means that 

Bnl[tf'(tnf-" - l)] = Bnl[tf't"f-"]-Bnl[tf'] = 0- nf,,, 

this last term being immediately obtained by applying t(d/dt) to (2.3) with k = 1;  

computed by using (2.17): 
(iv) Bnl[tf'(t"f-" - l)], being a matrix element corresponding to a product, is 

Bnl[tf)(tnf-n - l ) ]  = y1 ( n)B,-i,l[tnf-" - l]B,1[tf']; 
j = l  ] 

(v) Using again B,l[tf'] = j f ,  and comparing with item (iii), 
n-1 n-.l 

f n  = - j=1  c ( 1-1 . )B,,,,[r"f-" - ly/, 

which is precisely equation (3.5) with 

(3.7) 

This gives the n > j elements of the matrix B[g] = B-'[ f] .  We have already seen that 

Bfln[g(t)l= g; = 1. (3.8) 
By using (2.15), expression (3.7) can be written explicitly as 

(3.9) 

A more convenient form of equation (3.7) can be obtained by noticing that 
pf-" - 1 =exp(-n lnf/t)-  1. Then, 

r1--, 

1-1 
B,,-,,l[f"' -- 11 = C B,-,,Jln f(t) / tIBdexp(-nu) - 11 

n -1 

1= C ( - l ) 'n '~ , - , , l [ ln f ( t ) / t ] .  
1=1 

Collecting the results, the matrix B[g] representing the function g(t) inverse to a 
given function f ( u )  has its elements given by 

In particular, from (3.9) and (3.10), 

n - 1  1 ( n + l - l ) !  
(n - l ) !  g11= c (-1) 

1=1 

or 

(3.10) 

(3.11) 

These two expressions can be directly obtained from each other by observing that 

(9 Bn-1,df2/2,  f3/3, . . .) = & - ~ , L f ( t ) / t -  11; 
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(ii) putting x = -n in (2.21) and using (2.22), 

(3.12) 

where the terms j = 0 vanishes; a simple inversion of the summations establishes the 
result. 

Equations (3.10) and (3.11) are really new avatars of the inversion formula of 
Lagrange (Comtet 1974, Whittaker and Watson 1969), which of course disregard the 
analytic implications of the old theorem. They give directly the n th coefficient of the 
inverse series in terms of the coefficients of a given series up to order n. 

4. Cluster expansions and the equation of state 

We can now examine, from the point of view of the formalism presented above, the 
questions involving cluster expansions and the virial equation of state. Let us define two 
formal series 

where the notation is hopefully obvious. The equation of state, 
m PV 

Nk T f l = l  
A(g) =-= 1 + 1 a,+lgn, (4.3) 

is to be obtained by eliminating the fugacity z from the two former equations or, 
equivalently, by obtaining the virial coefficients a! in terms of the cluster integrals bj. 
The straightforward procedure would be to invert series (4.2), so obtaining z (g) to be 
substituted into (4.1). As f[z(g)]= gA(g) = angn, 

a, = ( l / n  ! F n ( f ;  z ) ,  (4.4) 
in the notation of equation (2.2). Then, (4.1) and (2.1) give 

(4.5) 

The numbers zi, coefficients of the series inverse to (4.2), can be computed directly 
from (3.11): 

21=1; 

This of course corresponds to the usual 'series-substitution' procedure given in 
elementary text books. The method works well for the calculation of the first few virial 
coefficients, but becomes increasingly impractical at higher orders. The main objective 
is to write a, directly in terms of the sole hi's, that is, to obtain Mayer's formulae. The 
following is a purely combinatorial approach to these formulae. 
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Let us begin with the simplest problem, to obtain the cluster integrals bI in terms of 
the virial coefficients al. This is just the opposite method to the one which leads to 
equation (4.6): we start by obtaining the coefficients g, in terms of the inverse series 
f (g): 

Here we see the fulcrum of Kahn's procedure (Kahn 1938): what is necessary 
is the function In [ z ( t ) / t ] .  By noticing that g(z) = z(d/dz)f(z) = 
z(dg/dz)[A(g) + g(dA/dg)], it is a simple matter to see that 

As g, = n!nb,, equation (4.7) becomes 

1 n-1 

n! I = I  

(4.8) 

(4.9) 

which is the relation required. 

observation that (4.8) implies 

(n + l)! 
n 

The method which leads to the inverse relation is much longer. It begins with the 

a n + i = B n i M 1  + ( z ( t ) / t -  1111 

=Bni[z(t)/t-1lBii[ln(l+ U)] 

(4.10) 

In order to be able to use equations (3.9) or (3.10) to transform this expression into the 
desired one involving the coefficients of the series g(t) inverse to z(u), we have first to 
write B[z(t)/t-1] in terms of B [ z ( t ) ] .  This is done by applying the multinomial 
theorem (2.3) to the function z ( t ) / t -  1. A straightforward calculation shows that 

B , [ ( $ Z ~ ,  423, . . .) = ~ , [ [ z ( t ) / t  - 11 = n 1 
Taking this result into (4.10), 

1 ( - 1 ) I  
Bn+i,i[z (t)l. (4.11) 

j = 1  (I  - j)!(n + j ) !  

(4.12) 

where use has been made of the combinatorial identity (Gradshteyn and Ryzhik 1965) 

It now remains to use the inversion formula (3.10), which for our case reads 
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Substitution into (4.12) and an interchange of the summations leads to 

The result of the last summation does not seem to be widely known. It can be modified, 
by using (2.19) with x = n + j ,  into 

(4.14) 

The summation involving the binomials can be shown, by the use of Klee's identity 
(Riordan 1968), to be (?). It is then enough to look again at equation (2.19) to recognise 
in (4.14) the expression for nl-'. So, finally 

1 f (-l)j ( n + j - l ) !  :. a,+l =- Bflj(2!bZ, 3!b3,4!b4, * . .), 
(n  + l ) !  j=1 (n - l ) !  

(4.15) 

(4.16) 

where use has been made of equation (3.12). This is the desired inversion formula 
(Mayer 1942). 

The final numerical expression of the equation of state is then 

(n + j - l ) !  m 

-- - l +  E g" f (-1)f Bnj(2!b2, 3!b3, . . .). PV 
Nk T n = l  i=1 (n + l)!(n - l)! 

(4.17) 

This form is the most convenient one for explicit calculations. For formal considera- 
tions, some other equivalent expressions, such as that obtained by directly substituting 
(4.15) into (4.3), may be more useful. 

5. Final comments 

We have shown that Bell polynomials pervade all the formalism involving cluster 
expansions in statistical mechanics. As matrix elements of a linear representation of the 
group of formal series appearing in all the usual manipulations concerning the subject, 
they allow for simpler versions of the main results in the field. Only time will tell 
whether this simplicity will breed a deeper understanding. It is our hope that, this being 
the common role of suitable formalisms, the above one will show itself to be of some 
use. 
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